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Mechanism of the Formation of Cyclopentadienone 
Derivatives from 4-Aryl-2,6-di-terf-butylphenols 
by Base-Catalyzed Oxygenation 

Sir: 

Recently it has been shown that 4-aryl-2,6-di-/e/-/-butyl-
phenols (1) are easily oxygenated in the presence of /-BuOK 
in /-BuOH to give antiaromatic 3-aryl-2,5-di-/er/-butylcyc-
lopentadienones (5) in good yields.1 The reaction provides a 
novel and convenient method for the synthesis of such anti-
aromatic compounds.2 We now wish to report the mechanism 
of this interesting reaction, clarified with the aim of isolation 
of intermediates employing 1 (R = 4-OMe) which quantita­
tively gives the cyclopentadienone 5 (R = 4-OMe). 

It has been found that modification of the reaction condi­
tions makes it possible to isolate the intermediates. Thus, 
oxygen was bubbled through a solution of 1 (R = 4-OMe) (15 
mmol) in /-BuOH/petroleum ether (1:1) (100 ml) containing 
/-BuOK (75 mmol) at -25 0C for 40 min. Acidification of the 
reaction mixture with aqueous NH4CI solution and evapora­
tion of the solvent afforded hydroperoxide 2 in 85% yield: 
yellow needles; mp 99-101°; ir (KBr) 3340 (OOH), 1665 
cm -1 (C=O); NMR (CDCl3) 5 1.03 (9, H, s, /-Bu), 1.28 (9 
H, s, /-Bu), 3.84 (3 H, s, OMe), 6.61 (1 H, d, vinyl H, / = 2.8 
Hz), 7.05 (1 H, d, vinyl H, J = 2.8 Hz), 6.7-7.6 (4 H, m, 
ArH), 9.00 (1 H, s, OOH, exchangeable with D2O).3 Treat­
ment of this hydroperoxide with /-BuOK in /-BuOH at 75 0C 
quantitatively gave 5 (R = 4-OMe), while the treatment at 
room temperature resulted in the formation of 3 and 5 (R = 
4-0Me) in 75 and 25% yields, respectively. The ratio of 3 to 
5 (R = 4-0Me) depends on the reaction temperature: the 
higher temperature causes the higher yield of 5 (R = 4-OMe).1 

As was shown by separate experiments,1 the cyclopentadi-
enones 5 are formed in high yields upon heating the epoxy-
o-quinols of type 3 with /-BuOK in /-BuOH at 75 0C. It is, 
therefore, obvious that the formation of 5 (R = 4-0Me) on the 
oxygenation of 1 (R = 4-OMe) proceeds by a mechanism in­
volving these intermediates. All attempts to isolate any inter­
mediate between 3 and 5 (R = 4-0Me) in this reagent system 
were unsuccessful. However, adsorption of 3 on activated basic 
alumina (activity I) in CH2CI2 followed by elution with MeOH 
afforded isomeric ring contracted product 4 in 50% yield: 
colorless needles; mp 158-160°; ir (KBr) 3460 (OH), 1730 
(CHO), 1710 cm"1 (ring C=O); NMR (CDCl3): 5 0.63 (9 
H, s, /-Bu), 1.33 (9 H, s, /-Bu), 3.39 (1 H, s, OH, exchangeable 
with D2O), 3.85 (3 H, s, OMe, 7.24 (1 H, s, vinyl H), 6.9-7.4 
(4 H, m, ArH), 9.17 (1 H, s, CHO); together with 5 (R = 4-
OMe) (25%). In addition, treatment of 3 with the same basic 
alumina in /-BuOH at 75 0C quantitatively afforded 5 (R = 
4-OMe). The compound 4 was also obtained by treatment of 
3 with silica gel or CF3COOH at room temperature. Taking 
account of the conclusions by Hart et al.8 for the acid-catalyzed 

Scheme I 

R: 4-OMe, 3-OMe, 2-OMe, 4-Me, 3-Me, 2-Me, 4-Cl1 H 
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rearrangement of cyclohexadienone monoepoxides, these re­
sults are indicative of the structure of the ring contracted 
product to be 4. Structure 4 is further supported by the fact 
that elution of 4 through a nonactivated basic alumina column 
with MeOH gave deformylated product 6 in 95% yield: liquid; 
bp 145° 1 mm; ir (KBr) 3540 (OH), 1700 cm"1 (C=O); 
NMR (CDCl3) <5 0.67 (9 H, s, f-Bu), 1.25 (9 H, s, r-Bu), 2.95 
(1 H, s, OH, exchangeable with D2O), 3.76 (3 H, s, OMe), 
4.08 (1 H, d, methine H, J = 2.0 Hz), 7.28 (1 H, d, vinyl H, 
J = 2.0 Hz), 6.7-7.3 (4 H, m, ArH). Elution of 3 through a 
column of nonactivated basic alumina with MeOH also gave 
6 in 70% yield, which gave no 5 on heating with J-BuOK. 
Compound 4 rapidly and quantitatively gave 5(R = 4-OMe) 
in the ?-BuOK/?-BuOH solution at 75 0C. Neither CO nor 
CO2 was liberated in all the cases where 5 (R = 4-OMe) was 
formed, suggesting the lost carbon atom being expelled as 
formic acid or its ester. Accordingly, neither Favorskii type 
rearrangement widely seen in the base-catalyzed ring con­
traction of cyclohexene epoxides9^13 nor the mechanism similar 
to that observed in the one-electron oxidation of 2,4,6-tri-
ter?-butylresorcinol14 is applicable for the present reaction. 

From these results, the mechanism by which the cyclopen-
tadienones 5 are formed on the base-catalyzed oxygenation of 
the phenols 1 is depicted as shown in the scheme.15 The ex­
clusive ortho hydroperoxylation of 1 can be rationalized by 
assuming that the carbanion electron distribution of the 
phenoxide prefers the 2-position because the carbanion at 4-
position is destabilized by electronic repulsion with the aro­
matic substituent and because the potassium ion seems to be 
complexed coming close to the O-C2-Q area of the phenoxide 
(association of ion pair within solvent cage). 
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Toward Metalloc\ clopropenium Ions: Redox Cleavage 
of Diorganyldichalcogenides by 
Trichlorocyclopropenium Salts 

Sir: 

By virtue of their sp-hybridized carbon-to-ligand bonds and 
the availability of two orthogonal acceptor-7r-orbitals, cyclo-
propenium ions can with some justification be regarded as 
"sesquiacetylenes" in which the acetylene bonding principle 
is extended to a second dimension. The idea of connecting the 
extremely versatile bonding and reactivity patterns of acetylene 
chemistry with the trifunctionality and strain potential of cy-
clopropenium ions has led us to explore synthetic pathways 
which would yield (organo-)metallocyclopropenium systems, 
conceivable analogues of metal acetylides. 

In this paper we report on the unprecedented redox cleavage 
of diorganyldichalcogenides by the trichlorocyclopropenium 
cation as a general and convenient route to triorganylchalco-
genocyclopropenium salts. Furthermore, as part of a prelimi­
nary mechanistic study of this reaction type, we outline a 
method which permits a controlled and high-yield synthesis 
of 1,2-dimethylthiocyclopropenthione, 11, the first derivative 
of thiodeltic acid. Except for the case of 21-2 all compounds in 
this paper are novel3 and should not be easily accessible by 
conventional techniques.4 The title reaction can be effected in 
CH2CI2 under mild conditions (3 h at room temperature) ac­
cording to eq 1 with yields around 40%: 

? XCH, 2 X = S (dec. > 130°; 

The triflates were converted to the less hygroscopic and better 
crystallizing fluoborates 2-4. These salts are colorless needles 
which develop an obnoxious odor through partial hydrolysis 
when exposed to the air. 

Just as with 21,2 spectroscopic data of 3 and 4 are indicative 
of the high symmetry (Z)3/,) of these systems. The NMR 
spectra (CDCl3) consist of one sharp singlet (2, r 7.15; 3, r 
7.28; 4, T 7.62) which moves upfield as the electronegativity 
of X decreases. 

The ir spectra are very simple and are entirely dominated 
by an intense broad band around 1200 cm - ' which, according 
to Yoshida's analysis of triheteroatom substituted cyclopro-
penium systems,4 must arise from coupling of the degenerate 
ring deformation modes (E') with the corresponding carbon-
to-ligand vibration modes ("characteristic ring vibration"): 
ir (KBr),5 2, 1350 (m), 1245 (s, broad), 1050 (m); 3,1440 (m), 
1220 (s, broad), 1060 (m); 4, 1435 (m), 1175 (s, broad), 1050 
cm -1 (m). 

Longest wavelength uv absorption exhibit a pronounced red 
shift on going from 2 to 4: uv (CH3CN) nm, 2, 275 (e 16 800); 
3, 297 (( 20 100); 4, 342 (e 14 200). This is the expected trend 
for an intramolecular charge-transfer band and is in line with 
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